
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Architecture Conformance Checking
in Dynamically Typed Languages

Sergio Mirandaa Elder Rodrigues Jrb Marco Tulio Valentea

Ricardo Terrab

a. Department of Computer Science, Federal University of Minas Gerais

b. Department of Computer Science, Federal University of Lavras

Abstract Architectural erosion is a recurrent problem faced by software
architects, which might be even more severe in systems implemented in
dynamically typed languages. The reasons are twofold: (i) some features
provided by such languages make developers more propitious to break the
planned architecture (e.g., dynamic invocations and buildings), and (ii) the
developers’ community lacks tool support for monitoring the implemented
architecture. To address these shortcomings, this paper presents an ar-
chitectural conformance and visualization approach based on static code
analysis techniques and on a lightweight type propagation heuristic. The
central idea is to provide the developers’ community with means to control
the architectural erosion process by reporting architectural violations and
visualizing them in high-level architectural models, such as reflexion mod-
els and DSMs. This paper also describes a tool—called ArchRuby—that
implements our approach. We evaluate our solution in three real-world
systems identifying 48 architectural violations of which the developers
had no prior knowledge. We also measure the effectiveness of our type
propagation heuristic reporting that (i) the number of analyzed types raises
5% on the average and (ii) certain violations are only detected due to our
heuristic.

Keywords Architecture conformance checking; high-level architectural
models; dynamically typed languages.

1 Introduction

The planned architecture of a system comprises a set of standards and best practices
that enable its evolution [Par94]. However, as the project evolves—due to lack
of knowledge, short deadlines, etc.—these patterns tend to deteriorate and hence
nullifying the benefits provided by an architectural design, such as maintainability,
scalability, portability, etc. [PTD+10, MNS95]. This phenomenon is known as software

Sergio Miranda, Elder Rodrigues Jr, Marco Tulio Valente, Ricardo Terra. Architecture Conformance
Checking in Dynamically Typed Languages. Licensed under Attribution-NoDerivatives 4.0 International
(CC BY-ND 4.0). In Journal of Object Technology, vol. V, no. N, 2015, pages M:1–35.
doi:10.5381/jot.201Y.VV.N.aN

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

2 · Miranda et al.

architecture erosion and it is considered a challenging research problem in the software
architecture area [KMHM08, TVCB15, SRK+09, Bor11, Bos04]. This erosion process
might be even more severe in systems implemented in dynamic languages for two main
reasons: (i) some features provided by these languages (e.g., dynamic invocations,
dynamic buildings, eval, etc.) make the developers more likely to break the planned
architecture, and (ii) these languages suffer from the lack of architecture and design
tools.

This article is centered on the assumption that systems implemented in dynamic
languages should also benefit from architectural conformance techniques and tools.
More important, existing architectural conformance solutions are limited since, as
far as we know, none addresses the particularities of dynamically typed languages.
Therefore, in a previous conference paper [MVT15b], we were the precursors in
proposing an architectural conformance checking approach for systems implemented
in dynamic languages, which is based on static code analysis techniques and on a
lightweight type propagation heuristic. Although our focus was on the architecture
conformance checking, we also provided high-level architectural models to better
visualize the identified violations. Furthermore, we showed that it is possible to
monitor the architecture of these systems using our proposed approach, which is
non-invasive and hence does not modify the source code or impact on the performance.
As a practical contribution, we implemented a tool for Ruby that supports a simple
and objective way to detect architectural violations and to visualize them using two
high-level architectural models, namely Reflexion Models and Dependency Structure
Matrices (DSMs).

In the presented paper, we extend our work in the following directions:
(a) by including more details and one more system in the evaluation of the proposed
approach. As a result, we could detect 48 violations in three real-world systems of
which the developers had no prior knowledge; (b) by evaluating the effectiveness of
our lightweight type propagation heuristic in the three previously evaluated real-world
systems, besides complementarily in 28 open-source systems. As main findings, the
number of inspected types increases 5% on the average but up to 17% with our
heuristic, and some violations are only detected due to this heuristic; (c) by applying
ArchRuby in itself we illustrate our approach; and (d) by providing more technical
details on the ArchRuby implementation.

The remainder of this paper is organized as follows. Section 2 provides a definition
for central concepts needed to follow our approach, such as Ruby features, architecture
conformance checking, and high-level architectural models. Section 3 presents the
proposed approach, describing the architectural rules specification, conformance, and
visualization processes. Section 4 details the proposed type propagation heuristic.
Section 5 presents ArchRuby, the tool that implements the proposed solution. Section 6
reports results from applying our solution in three real-world systems. Section 7
measures the effectiveness of the proposed type propagation heuristic in the previous
evaluated systems. Finally, Section 8 discusses related work and Section 9 concludes.

2 Background

In this section, we discuss background related to our work. Section 2.1 describes and
exemplifies Ruby features, and Section 2.2 briefly introduces architectural conformance
checking techniques and high-level architectural models.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 3

2.1 Ruby

Since our approach focuses on systems implemented in Ruby, an overview of the
language features is relevant. Every Ruby program is designed through objects, since
the language is purely objected-oriented [Bla09]. Even true and false are objects,
i.e., they are instances of TrueClass and FalseClass, respectively. To define classes
and methods, we use the class and def keywords, respectively. Ruby has single
inheritance, but it is possible to include many modules in one class. Basically, a
module is used to implement methods and constants but, unlike a class, it is not
possible to instantiate a module.

Furthermore, Ruby is a dynamic language with several powerful abstractions.
For example, it is possible to define methods, classes, re-open a class, evaluate
a valid Ruby code inside some context, re-define methods and call methods
passing strings as arguments. As an example, Figure 1 illustrates the usage of
the aforementioned features. In line 1, the code is defining a class RbClass and
a module Test. In line 2, class RbClass includes module Test, therefore method
salute is now part of this class. In line 7 we instantiate an object of RbClass
and call method say_hi (line 8). In line 10, we re-open class RbClass and
define a new method called say_bye (lines 11-13). In lines 16-18, we define a
method add only for the object o. Finally, in line 20, we call the method defined by last.

1 class RbClass module Test
2 include Test def salute
3 def say_hi puts "Hi"
4 salute end
5 end end
6 end
7 o = RbClass.new
8 o.say_hi
9

10 class RbClass
11 def say_bye
12 puts "bye"
13 end
14 end
15

16 def o.add(x,y)
17 x.send "+", y
18 end
19

20 o.add(5,9)

Figure 1 – Ruby source code example

2.2 Architectural Conformance and Visualization

Architecture is a crucial artifact that needs to be followed and monitored by the
developers during software development. Architectural conformance is the process that
checks to which degree the concrete architecture (e.g., the source code implementation)
is consistent with the planned one [KMR08]. Architectural conformance can be static

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

4 · Miranda et al.

(i.e., without executing the target system) or dynamic (i.e., executing the target
system). This section presents architecture conformance checking techniques related
to ArchRuby:

Reflexion Models (RMs): As proposed by Murphy et al., Reflexion Models
compare two models [MNS95]. One representing a high-level model of the system
(e.g., specified by the developer) and another representing the low-level model of
the system (e.g., produced either by statically analyzing the system source or by
collecting information during the system execution). With these inputs the technique
computes a software reflexion model that matches the high-level and the low-level
models. The reflexion model highlights divergences and absences, regarding these
models. Divergences indicate source interactions that are not expected by the planned
architecture and absences indicate interactions that are expected but not found. The
outcome of the evaluation is usually summarized and documented in a separated
report, which is presented as a graph and text. The former connects system modules
and reports the detected divergences and absences.

Dependency Structure Matrices (DSMs): The concept of DSM was first
proposed by Baldwin and Clark to show the importance of modular design in the
hardware industry [BC99]. Thereafter, Sullivan et al. claimed that DSM could also
be used in software industry [SGCH01]. A DSM is a square matrix where the rows
and columns represent the modules of the system. Traditionally, DSM used a “X” to
indicate a dependency between two modules. However, Sangal et al. in the LDM
tool represent in the cells the number of references between two modules [SJSJ05].
In this tool, it is possible to distinguish the dependencies using design rules, which
have two forms: A can−use B and A cannot−use B, indicating that module A can
(or cannot) depend on module B. DSM has a more scalable output than the output
generated by reflexion models based on graphs, since a matrix usually scales better
than a graph.

Constraint languages: The main objective of constraint languages is to provide a
method to specify structural dependencies. DCL (Dependency Constraint Language)
is a domain specific language that supports the definition of structural constraints
between modules [TV09]. DCL provides constraints to capture divergences and
absences. First, to capture divergence architects have to specify only can, can only

or cannot rules for specified modules. Last, to capture absence architects specify
dependencies that must be present in the source code. ArchRuby—the architecture
conformance checking technique proposed in this paper—is directly inspired on DCL
constraints.

3 The Proposed Approach

This paper describes an architectural conformance approach based on static code
analysis techniques and on a lightweight type propagation heuristic for systems
implemented in dynamically typed languages. Additionally, we also provide two high-
level architectural models to better visualize the architectural violations. The central
goal is to provide developers with means to control the architectural erosion process
by reporting architectural violations (conformance) and by providing the high-level
architectural models to better visualize the identified violations (visualization).

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 5

Figure 2 provides an overview on the proposed approach. Our solution receives
as input the architectural rules (in1) and the source code of the target system (in2).
After parsing the architectural rules file (t1) and the source code (t2), it triggers
the architectural conformance process (t3) in order to detect design decisions that
do not respect the intended architecture. As result, our solution outputs a textual
report (out1), which details the detected violations (source code location, violated
rule, etc.), and two high-level architectural models to better visualize the identified
violations (out2). In these models, we differentiate the dependencies—edges in reflexion
models and cells in DSMs—that represent violations (refer to Section 2.2).

Rules
Parsing

ArchRuby
Architectural

Rules

Source Code

Source Code
Parsing

Architectural
Conformance

Report of Violations

High-Level
Architectural Models

Figure 2 – The proposed approach

This section is organized as follows. Section 3.1 presents the running system.
Section 3.2 details the specification of architectural rules and Section 3.3 describes
the architectural conformance process. Finally, Section 3.4 describes the high-level
architectural models our approach relies on to better visualize the identified violations.

3.1 Running Example

We rely on the architecture of ArchRuby1 itself and its implementation to illustrate
the architectural conformance and visualization processes provided by our approach.
The tool was implemented in Ruby and relies on five Gems:2 RubyParser to parse the
source code, SexpProcessor to perform tree traversals, Yaml to parse the architectural
rules specification file, GraphViz to produce the reflexion model, and IMGKit to produce
the DSM. Figure 3 shows the diagram of the core classes of the system. A more
detailed description on the ArchRuby implementation can be found in Section 5.

3.2 Architectural Rules Specification

Architectural rules are specified in a domain-specific language in YAML format,
widely used in the Ruby ecosystem. Thereupon, even non-experienced developers can
easily define rules. Specifically, each module of the system under evaluation must be
formalized as follows:3

1 <module_id>:
2 (files | gems): ’<pattern_desc> {,<pattern_desc>}’
3 [(allowed | forbidden): ’<module_id> {,<module_id>}’]
4 [(required): ’<module_id> {,<module_id>}’]

where <module_id> is the name of the module (line 1). Modules can be composed by
files (files) or Gems (gems) that must be defined by at least one <pattern_desc>,

1The source code is publicly available at http://github.com/sergiotp/archruby.
2Gem represents a reusable package or application written in Ruby language.
3Formalization based on the Extended Backus-Naur Form (EBNF).

Journal of Object Technology, vol. V, no. N, 2015

http://github.com/sergiotp/archruby
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

6 · Miranda et al.

Figure 3 – ArchRuby architecture

delimited by commas (line 2). It is not possible to (i) combine files and Gems in the
same module definition, and (ii) define constraints to module composed strictly by
Gems, since they are external libraries that are not part of the target system being
analyzed. When specifying files, the pattern matching is based on shell glob4 (a default
Ruby file library) to map multiple files at once using wildcards, e.g., ∗ and ∗∗.

To detect divergences—dependencies that exist in the source code but are not
prescribed by the planned architecture [PTD+10]—for each module we define the
ones that it is allowed to depend (allowed) or not (forbidden), which are defined
by at least one <module_id>, delimited by commas (line 3). Here, we consider
as a dependency from a type A to a type B when (i) A accesses a field of type B,
(ii) A invokes a method of type B, (iii) A instantiates an object of type B, (iv) A
declares a variable or formal parameter of type B, (v) A raises an exception of type B,
and (vi) A inherits from, extends, or includes B.5 Likewise, to detect absences—
dependencies that do not exist in the source code but are required by the planned
architecture [PTD+10]—for each module we define the ones that it must depend
(required), which are defined as aforementioned (line 4). It is worth noting that a
definition for a particular module can combine required with allowed or forbidden.
However, it cannot have allowed and forbidden in a same module definition. When
a module does not define clauses allowed and forbidden, our language considers that
such module is allowed to depend on any module.

In order to illustrate an YAML definition, Figure 4 presents the definition of
4A detailed explanation of shell glob in Ruby (specifically, class Dir) can be found at:

http : //ruby−doc.org/core−2.2.0/Dir.html#method−c−glob
5The code of a lambda is verified only in the method where it is defined, not in its call sites. For

instance, assume that a method return_lambda in module M3 returns a lambda f . Assume also that
a module M2 defines a method search_lambda that calls M3::return_lambda. Assume, lastly, that
a method in module M1 calls M2::search_lambda. In such scenario, (i) only module M3 depends
on the types lambda f establishes dependency with, (ii) module M1 depends only on module M2,
and (iii) module M2 depends only on module M3.

Journal of Object Technology, vol. V, no. N, 2015

http://ruby-doc.org/core-2.2.0/Dir.html#method-c-glob
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 7

architectural rules to the ArchRuby tool. For example, module module_definition
(lines 1-3) contains file module_definition.rb and can depend on classes from
module config_definition, ruby_parser, dependency, constraint_break, and
file_extractor. On the other hand, module multiple_constraints_validator
(lines 5-7) contains file archruby.rb and cannot depend on classes from module
architecture. Moreover, shell glob allows to use ∗ to reference all files in the directory
and ∗∗ to reference directories in a recursive manner. For example, module presenters
(line 13) is composed by all rb files listed in directories inside presenters. It is worth
noting that we do not define architectural rules for modules strictly composed by
Gems (e.g., parser_ruby, sexp_processor, yaml_parser, and graphviz) because
they are not internal components of the target system. Nevertheless, Gems must be
defined by their namespace (main module). For example, module parser_ruby is
composed by Gem ruby_parser whose namespace is RubyParser (lines 41–42).

1 module_definition:
2 files: ’lib/archruby/architecture/module_definition.rb’
3 allowed: ’config_definition, ruby_parser, dependency, constraint_break, file_extractor’
4
5 multiple_constraints_validator:
6 files: ’lib/archruby.rb’
7 forbidden: ’architecture’
8
9 architecture_parser:

10 files: ’lib/archruby/architecture/parser.rb’
11 allowed: ’config_definition, module_definition, type_propagation, yaml_parser’
12
13 presenters:
14 files: ’lib/archruby/presenters/∗∗/∗.rb’
15 allowed: ’architecture, graphviz, imgkit’
16
17 ruby_parser:
18 files: ’lib/archruby/ruby/parser.rb’
19 allowed: ’dependency’
20 required: ’parser_ruby, sexp_processor’
21
22 config_definition:
23 files: ’lib/archruby/architecture/config_definition.rb’
24
25 architecture:
26 files: ’lib/archruby/architecture/architecture.rb’
27 forbidden: ’type_propagation’
28
29 constraint_break:
30 files: ’lib/archruby/architecture/constraint_break.rb’
31
32 dependency:
33 files: ’lib/archruby/architecture/dependency.rb’
34
35 type_propagation:
36 files: ’lib/archruby/architecture/type_propagation_checker.rb’
37
38 file_extractor:
39 files: ’lib/archruby/architecture/file_content.rb’
40
41 parser_ruby:
42 gems: ’RubyParser’
43
44 sexp_processor:
45 gems: ’SexpInterpreter’
46
47 yaml_parser:
48 gems: ’YAML’
49
50 graphviz:
51 gems: ’GraphViz’
52
53 imgkit:
54 gems: ’IMGKit’

Figure 4 – ArchRuby architectural specification file

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

8 · Miranda et al.

3.3 Architectural Conformance

The architectural conformance process is performed from the architectural rules
specification and the source code of the target system. This process (i) extracts
the modules and rules from the architectural rules specification file; (ii) extracts
the dependency graph of the entire system; (iii) includes type information in the
dependency graph using a type propagation heuristic (described in Section 4); and
(iv) checks whether the dependencies obtained in steps ii and iii respect the rules
defined in step i.

The conformance process outputs a file reporting the detected architectural viola-
tions (divergences and absences). For example, consider the rules defined for ArchRuby
(Figure 4). In such specification, module module_definition is not explicitly allowed
to depend on module type_propagation (line 3). However, assume that a class from
module_definition accesses a class from type_propagation. Such dependency
represents a violation and would be reported to developers in the textual output file as
illustrated in Figure 5.6 For each detected violation, the report indicates the violation
type (line 1), information from the origin class (lines 2–4) and from the target class
(lines 5–6), and the violated rule (line 7). Besides the textual report file, ArchRuby
also provides two graphical report files in order to provide complementary ways to
visualize the detected violations, as explained in Section 3.4.

1 divergence:
2 origin_module: module_definition
3 origin_class: Archruby::Architecture::ModuleDefinition
4 origin_line: 29
5 target_module: type_propagation
6 target_class: Archruby::Architecture::TypePropagationChecker
7 constraint: module ’module_definition’ cannot depend on module ’type_propagation’

Figure 5 – Textual report of an architectural violation

3.4 Architectural Visualization

Although we focus on architecture conformance checking process, we complement our
textual report of violations by providing two high-level architectural models to better
visualize the identified violations: (i) Reflexion Model in a subtle adaptation of the one
originally proposed by Murphy et al. [MNS95] and (ii) Dependency Structure Matrix
(DSM) in a subtle adaptation of the one proposed by Sangal et al. [SJSJ05].

3.4.1 Reflexion Model

The reflexion model is a directed dependency graph whose vertices represent the mod-
ules defined in the architectural rules specification and edges represent dependencies
established between the modules, which are differentiated when refer to architectural
violations (refer to Section 2.2).

Figure 6 illustrates the reflexion model of ArchRuby.7 The light gray rectangles
represent internal modules (e.g., module_definition) and the gray trapezes represent
external modules (e.g., parser_ruby). The edges are shown as follows (assume an
edge from A to B):

6The report is also in YAML format to facilitate reuse.
7For a better visualization, all high-level architectural models—Reflexion Models and DSMs—are

publicly available at: http : //aserg.labsoft.dcc.ufmg.br/archruby/jot2015

Journal of Object Technology, vol. V, no. N, 2015

http://aserg.labsoft.dcc.ufmg.br/archruby/jot2015
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 9

Figure 6 – Reflexion model automatically computed by ArchRuby

() Black edge: indicates an allowed dependency from module A to B. For instance,
ruby_parser establishes one (#1) dependency with module dependency (see
line 19, Figure 4).

(!) Dashed orange edge with an “!” mark: indicates a divergence, i.e., there is a
class from module A depending on module B, even though it is (i) forbidden
or (ii) not explicitly allowed. For example, architecture depends on module
type_propagation, but it is forbidden (case i; see line 27, Figure 4). As
another example, module_definition depends on module type_propagation,
but it is not explicitly allowed (case ii; see line 3, Figure 4).

(x) Dotted red edge with an “X” mark: indicates an absence, i.e., there is no
class from module A depending on module B, even though it is required. For
instance, a class from ruby_parser does not depend on parser_ruby (see
line 20, Figure 4).

() Gray edge: indicates a warning, i.e., there is no class from module A depending
on module B, even though it is prescribed as allowed. For instance, we defined
that architecture_parser is allowed to depend on module type_propagation
(see line 11, Figure 4), but there is no dependency from the former to the latter.

3.4.2 Dependency Structure Matrix

Reflexion models have a well-known scalability problem since it is a graph-based model.
As the number of modules and dependencies grows, the model becomes unreadable.
In this sense, ArchRuby also provides a high-level architectural model based on DSMs,

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

10 · Miranda et al.

which is a weighted square matrix where the rows and columns are numbered and
represent the modules of the system, and the cells represent the dependencies between
them (refer to Section 2.2).

Figure 7 illustrates the DSM of ArchRuby. The cells represent the number of
references between two modules. The cells are shown as follows:

() Gray cell: indicates a allowed dependency. For instance, the number 7 in row 1
and column 3 denotes that module architecture_parser establishes seven
allowed dependencies with module module_definition.

() Orange cell: indicates a divergence. For example, the number 1 in row 10
and column 7 represents that module architecture establishes a forbidden
dependency with module parser_ruby. As another example, the number 1 in
row 10 and column 1 represents that module module_definition establishes a
forbidden dependency with module type_propagation.

() Red cell: indicates an absence. For instance, the number 1 in row 12 and
column 5 represents that module ruby_parser does not depend on module
parser_ruby even though it is required.

(?) Question cell: indicates a warning. For instance, the symbol “?” in row 10 and
column 3 represents that module architecture_parser does not establish an
expected dependency with module type_propagation.

Figure 7 – DSM automatically computed by ArchRuby

4 The Proposed Type Propagation Heuristic

In this section, we describe a type propagation heuristic—more specifically, a sim-
plification of the one formalized by Furr et al. [FhDAFH09]—which aims to build a
set TYPES whose elements are triples [method, var_name, type], where type is one of
the possible types inferred for a variable or a formal parameter var_name defined in
method method. We build this set based on the following recursive definition:

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 11

i) Base: For each direct inference (e.g., instantiation) of a type T assigned to a
variable x in a method f, then [f, x, T] ∈ TYPES.

ii) Recursive step: If [f, x, T] ∈ TYPES and there is a call g(x) in f, then [g, y, T] ∈
TYPES, where y is the name of the formal parameter in g. This step is applied
until a fixpoint is reached, i.e., no new triples are added to set TYPES.

Figure 8 illustrates the proposed heuristic. When executing the base step of the
algorithm, it initializes TYPES with [A::f, x, Foo], [A::f, b, B], [A::f, self, A], [B::g, c, C],
and [C::h, d, D] since they can be directly inferred. On the first application of the
recursive step, the triples [B::g, x, Foo] and [B::g, z, A] are included in TYPES, since the
type of the variables x and self are known in the call of g. On the second application
of the recursive step, the triples [C::h, y, Foo] and [C::h, y, A] are included in TYPES,
since the type of variables x and z are known in the call of h. On the third application
of the recursive step, the triples [D::m, k, Foo] and [D::m, k, A] are included in TYPES

(where k is the name of the parameter in D::m), since the type of the variable y is
known in the call of m. The forth application of the recursive step reaches the fixpoint
since no new triple is added to set TYPES.

1 class A class B class C
2 def f def g(x z) def h(y)
3 x = Foo.new c = C.new d = D.new
4 b = B.new c.h(x) d.m(y)
5 b.g(x,self) c.h(z) end
6 end end end
7 end end

Figure 8 – Piece of code to illustrate the proposed type propagation heuristic

In this example, it is worth noting that the formal parameter y of method C::h can
be either of type A or Foo. It indicates that: (i) the type propagation mechanism has
to consider all potential types of a variable or formal parameter when propagating the
type; and (ii) the architectural conformance process has also to consider all potential
types (A and Foo, in this scenario) when searching for violations.

5 The ArchRuby Tool

ArchRuby is a Gem for Ruby that implements our proposed approach [MVT15a]. The
tool is executed from the command line. We decided for such UI because, in such way,
any organization—regardless of its software environment—can adopt ArchRuby in its
development process. The following example illustrates a usage scenario:

archruby --arch_def_file=/fmot/arch_def.yml --app_root_path=/fmot

The executable archruby requires as input the path of the architectural rules file
(--arch_def_file) and the path of the system (--app_root_path), and provides as
output the architecture violation report (archruby_report.yml) and two high-level

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

12 · Miranda et al.

architectural models to better visualize the identified violations (archruby_rm.png
and archruby_dsm.png), as previously illustrated in Figure 2.

As also previously illustrated in Figure 3, the ArchRuby implementation follows an
architecture divided in the following modules:

1. Rules parser: Responsible for extracting and storing the content of the
architectural rules file (e.g., /fmot/arch_def.yml) in an internal data structure.
It also warns the user when he/she specifies invalid constraints, e.g., allowed
and forbidden together. We rely on the standard Ruby Yaml Gem to parse the
YAML file.

2. Source code parser: Responsible for extracting and storing all system depen-
dencies (e.g., from /fmot) in an internal data structure. We rely on Gem
ruby_parser to parse the source code of each class. It produces s-expressions,
which are data structures in form of tree. Basically, during the tree traversal,
this module stores the type of variables and formal parameters, besides the calls
involving them.

3. Type propagation heuristic: Responsible for inferring types of variables, according
to the heuristic previously described in Section 4. It complements the internal
data structure obtained by the Source code parser module.

4. Conformance process: Responsible for verifying whether the implemented
architecture (as represented by the source code) follows the planned architecture
(as represented by the architectural rules), as previously described in Section 3.3.
This module detects the dependencies that do not respect the specified
architectural rules and stores detailed information regarding them. It relies on
the data structures initially built by the Rules parser and Source code parser
modules to detect the dependencies that do not respect the architectural rules.
In other words, this module analyzes the internal data structure built in the
previous steps to search for potential violations. When a violation is detected, it
stores detailed information—namely dependency type, name of the source and
target modules, line number, and name of the source and target classes (see
Figure 3, class ConstraintBreak)—for further reference.

5. Violation reporting: Responsible for structuring the detected architectural
violations in a YAML file (archruby_report.yml).

6. High-level models: Responsible for generating the high-level architectural models
of the target system as previously described in Section 3.4. It relies on the data
structure initially built by the Source code parser module and on the set of
violations detected in the Conformance process module to highlight the identified
violations in the generated visualization models. This module relies on Gem
GraphViz to produce reflexion models as annotated directed dependency graphs
and on Gem IMGKit to produce DSMs as HTML tables with CSS style.

Although each of the aforementioned modules has a well-defined responsibility, they
may contain more than one single class in order to have a greater control over the
parts of the system. In such way, it is easier to maintain the existing features and add
new ones. Furthermore, we have implemented several unit tests that are automatically

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 13

performed during regression testing to ensure that changes do not break the expected
behavior of the system. It is worth noting that the dependencies that are not part
of the Ruby standard library (e.g., ruby_parser and GraphViz) are automatically
installed when the user installs ArchRuby.

6 Evaluation of the Proposed Approach

This section evaluates the applicability of our proposed approach in real contexts of
software development. We chose three real-world systems—Dito Social, Tim Beta,
and PLC Attorneys—to apply our architecture conformance checking process. For
each system, we report the results into each step: (i) architectural rules specification,
(ii) architectural conformance, and (iii) architectural visualization. More important,
a qualitative discussion is conducted for each evaluated system, besides a general
discussion to conclude the section.

6.1 Target Systems

We evaluate our solution in three real-world systems:8 Dito Social, a social platform
provided by an IT company to its final customers; Tim Beta, a telecommunication com-
pany communication channel with mostly target young groups; and PLC Attorneys, a
project task management software system used by a law firm. Table 1 reports the
main information of the systems.

Table 1 – Target systems

System LOC # classes /
gems

Technologies

Dito Social 13,304 142 / 34 Ruby on Rails, Resque, Rspec, RSA, Twitter,
Google Plus, Koala, Suspot Rails, Mysql2

Tim Beta 17,817 141 / 50 Ruby On Rails, Resque, Twitter, YoutubeIt,
Google Plus, Instagram, Devise, Foursquare2

PLC Attorneys 2,034 52/35 Ruby on Rails, Devise, CanCanCan, PaperClip,
Mysql2, Select2Rails, CoffeeRails

6.2 Methodology

For each subject system with the support of its chief architect who designed the
evaluated architecture, we performed the following major steps:

(i) Architectural rules specification: The software architect defines the planned
architecture of the system, soon after be instructed on how to specify modules
and rules using our architectural description language (Section 3.2). To ensure
the correct understanding by the architects, we ask them to practice the
specification in an illustrative project. During the practice, they must specify a
few rules and they can ask for clarifications. By concluding the practice, we
argue that the architects are fully qualified to specify the architectural rules.

(ii) Architectural conformance: After a brief tutorial about our tool—its inputs and
outputs—the software architect executes ArchRuby and validates the detected
violations. Occasionally, the software architect can refine the architectural

8http://www.dito.com.br, http://www.timbeta.com.br, and http://metodo.plcadvogados.com.br

Journal of Object Technology, vol. V, no. N, 2015

http://www.dito.com.br
http://www.timbeta.com.br
http://metodo.plcadvogados.com.br
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

14 · Miranda et al.

rules—which have been specified in step (i)—to avoid false positives. Specifically,
we ask the architects to analyze each violation and double check in the source
code whether the violation is indeed a true positive. We repeat this process
until the architects are confident that the architectural rules indeed represent
the system architecture.

(iii) Architectural visualization: The software architect evaluates the reflexion model,
one of the high-level architectural models provided by ArchRuby, to better
visualize the identified violations. We ask the architects to express an opinion
on the readability and representativeness of the reflexion model. Occasionally,
to provide a more solid feedback, the architects can share the model with other
team members.

6.3 Dito Social

Architectural rules specification: The software architect specified 62 modules and
43 architectural rules. A relevant subset of the specification is reported in Figure 9.9
The dashboard_controller module is responsible for presenting information to
the customers and hence can access several data providers’ modules (lines 3–7).
The facebook_info_retriever module is responsible for retrieving data from
Facebook and hence can access only the modules facebook and airbrake (line 11).
The post_model is responsible for data persistence and hence must implement
classes from module activerecord (line 15) and can access modules that provide
underlying services (lines 16–18), e.g., post_workers. The report_model module is
responsible for generating reports about posts and interactions, and hence can access
modules that provides data and e-mail delivery functionality (e.g., post_model,
interaction_model, mail, aws, etc.) (line 22).

1 dashboard_controller:
2 files: ’app/controllers/dashboard/∗∗/∗.rb’
3 allowed: ’dashboard_finder, stats_model, network_model,
4 action_model, app_model, interaction_model, post_model,
5 social_helper, user_network_model, stats_model,
6 controller_base, referral_model, origin_model, http_party,
7 user_agent_model, user_model, airbrake’
8
9 facebook_info_retriever:

10 files: ’lib/facebook_info_retriever.rb’
11 allowed: ’facebook, airbrake’
12
13 post_model:
14 files: ’app/models/post.rb’
15 required: ’activerecord’
16 allowed: ’resque, post_workers, post_logger, facebook_info_retriever,
17 social_helper, interaction_model, question_option_model,
18 logger, activerecord, rails’
19
20 report_model:
21 files: ’app/models/report/∗∗/∗.rb’
22 allowed: ’post_model, social_helper, interaction_model, rails, mail, aws, http_party’

Figure 9 – Subset of the architectural specification of Dito Social

Architectural conformance: ArchRuby could detect 24 violations in Dito Social,
as reported in Table 2. Two of these violations are discussed next.

9The complete data of the evaluation of the proprietary systems are available at:
http : //aserg.labsoft.dcc.ufmg.br/archruby/jot2015

Journal of Object Technology, vol. V, no. N, 2015

http://aserg.labsoft.dcc.ufmg.br/archruby/jot2015
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 15

Table 2 – Architectural violations detected in Dito Social

Module Rules # Violations

dashboard_controller allowed: ’dashboard_finder, ...’ 16
dashboard_finder allowed: ’stats_model, ...’ 3
report_model allowed: ’post_model, ...’ 2
event_model allowed: ’action_model’ 1
user_model allowed: ’user_infos, ...’ 1
facebook_info_retriever allowed: ’facebook, airbrake’ 1

Example of violation #1: The service of user notification (e.g., e-mail) was moved
to another system and hence it is no longer part of Dito Social. Nonetheless,
as shown in Figure 10, ArchRuby detected five dependencies (lines 2, 3, 5, and 7)
in class EmailsController—which belongs to module dashboard_controller—
to class Email, which is not explicitly allowed according to the architectural
rules (lines 3–7 of Figure 9). More specifically, class Email does not belong to any
defined module; in this case, we include such kind of classes in a module called unknown.

1 def create #from Module dashboard_controller
2 email = Email.new params[’email’]
3 email.save!
4 send_template_to_mandrill
5 if email.action
6 redis_action_id = SocialHelper::RedisData.get_action_id_by_name
7 email.action.name, email.app_id
8 end
9 end

Figure 10 – Example #1 – Divergence detected in Dito Social

Example of violation #2: Module post_model is allowed to access mod-
ule facebook_info_retriever, but not the opposite. Nevertheless,
as shown in Figure 11, ArchRuby detected two dependencies (lines 15
and 18) in class FacebookInfoRetriever—which belongs to mod-
ule facebook_info_retriever—to class Post from module post_model, which is
not allowed according to the architectural rules (line 11 of Figure 9). It is worth
noting that our approach could only detect such violation due to our type propagation
heuristic, since the type was first inferred in class Post (line 5), but it was propagated
by the method call to get_first_likes_comments_and_people (lines 8-9).

Architectural visualization: Figure 12 illustrates a fragment of the reflexion model.
We can note divergences (orange edges) from modules dashboard_controller
(as described in Example #1), event_model, user_model, report_model,
and dashboard_finder to classes that do not belong to any defined module.
We also can note the allowed communication from module post_model to
facebook_info_retriever (black edge). However, the opposite, as described in
Example #2, is highlighted as a divergence.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

16 · Miranda et al.

1 class Post # from Module post_model
2 def first_update_complete_info_from_facebook(post_info, update_freq,
3 limit = 50, is_customer = false)
4 ...
5 vpost = Post.select(’id, fb_id, likes_count, comments_count,
6 updated_info, premium, international’).find_by_fb_id(fb_id)
7 facebook = FacebookInfoRetriever.new
8 facebook.get_first_likes_comments_and_people(vpost, limit,
9 special_token.present?) do |info|

10 ...
11 end
12 end
13

14 class FacebookInfoRetriever # from Module facebook_info_retriever
15 def get_first_likes_comments_and_people post, limit = 25,
16 special_token = false, &block
17 ...
18 likes_count = post[’likes’]
19 ...
20 end
21 end

Figure 11 – Example #2 – Divergence detected in Dito Social by type propagation

unknown

dashboard_controller

dashboard_finder

! (#16)

! (#1)

post_model

facebook_info_retriever

! (#1)

report_model

! (#2)

user_model
! (#3)

event_model
! (#1)

Figure 12 – Fragment of the reflexion model of Dito Social

6.3.1 Discussion

The software architect described the architectural rules incrementally. According to
the architect, this facilitates the refinement of some rules to avoid false positives in
the architecture conformance checking process. It is worth noting that the architect
relied on the textual violation report to remember details about the old parts of the
system and to refine the architectural rules.

Although the feature responsible for sending e-mail had already been removed
from the user interface, it still is in the source code. The architect reported that
unused code impacts negatively on the maintainability because it may mislead
new developers. Moreover, another critical divergence was found between modules
facebook_info_retriever and post_model. Module facebook_info_retriever

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 17

is likely to be used with only the Facebook API, i.e., it cannot rely on other parts
of the system. According to the architect, this divergence hampers the evolution
of the system since module facebook_info_retriever is coupled with other parts.
Last, the architect argued that, as the number of modules grows, the reflexion model
becomes hard to analyze. Particularly in this case study, we also presented the DSM
of the system. The architect argue that the two models are complementar, e.g., DSMs
are much more appropriate for tasks that require a complete view of the system, but
reflexion models are more appropriate to analyze dependencies among few modules.

6.4 Tim Beta

Architectural rules specification: The software architect specified 43 modules
and seven architectural rules. A relevant subset of the specification is reported in
Figure 13. Module models implements the Model layer of the MVC architectural
pattern and hence can access the modules that are responsible for the data persistence
(lines 3–7). Module core implements the main features of the system and hence must
access the modules that provide underlying services (lines 11–14). Module workers is
responsible for background activities, e.g., updating users’ information based on their
facebook profile afterwards they sign in (line 18).

1 models:
2 files: ’app/models/∗∗/∗.rb’
3 allowed: ’core, helpers, resque, logistica, dito_social_p,
4 postage_app, workers, facebook, devise, csv, olap,
5 twitter_oauth, datapoints, can_can, tim_points, linker,
6 twitter, rails, active_record, image_magick,
7 action_controller’
8

9 core:
10 files: ’app/core/∗∗/∗.rb’
11 allowed: ’models, helpers, facebook, twitter, foursquare, gmail,
12 mailers, instagram, dito_social_p, twitter_oauth,
13 contact_us, resque, sanitize, active_record, workers,
14 hoptoad’
15

16 workers:
17 files: ’app/workers/∗∗/∗.rb’
18 allowed: ’models, core, facebook, dito_social_p, rails’

Figure 13 – Subset of the architectural specification of Tim Beta

Architectural conformance: ArchRuby could detect 22 violations in Tim Beta, as
reported in Table 3. An example of a detected violation is discussed next.

Table 3 – Architectural violations detected in Tim Beta

Module Rules # Violations

core allowed: ’models, ...’ 6
models allowed: ’core, ...’ 16

Example of violation #3: Features related to the Orkut social network have been
removed from Tim Beta; consequently, the respective source code has been removed
as well. Nevertheless, as shown is Figure 14, class User—which belongs to mod-
ule models—accesses class Core::Datapoints::Orkut (line 2), which is not explicitly

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

18 · Miranda et al.

allowed according to the architectural rules (lines 3–7 of Figure 13).

1 def update_orkut_stats user_net = nil, app = nil #from Module model
2 orkut_collector = Core::Datapoints::Orkut.new(
3 user_net.access_token,
4 user_net.access_secret,
5 user_net.social_id
6)
7 orkut_datapoints = orkut_collector.collect
8 end

Figure 14 – Example #3 – Divergence detected in Tim Beta

Architectural visualization: Figure 15 illustrates a fragment of the reflexion
model to better visualize some identified violations. We can note divergences (orange
edges) from modules core and models to classes that do not belong to any defined
module; the latter refers to the scenario described in Example #3.

unknown

models

! (#16)

core

workers

controllers

views

! (#6)

Figure 15 – Fragment of the reflexion model of Tim Beta

6.4.1 Discussion

The architect of Tim Beta relied on an artifact that specifies the most important
modules in the system as the basis to specify the architectural rules. As a consequence,
there is a relative small number of architectural rules. The architectural conformance
process detected components that the software architect had thought no longer ex-
ists. For instance, all functionality related to the Orkut social network should have
been entirely removed from the source code, but they were still found in the source
code. Moreover, the architect argue (i) that ArchRuby is important to support the
architectural monitoring since it is impractical to manually do this process; (ii) that
ArchRuby should be incorporated into the continuous integration process; and (iii) that
the reflexion model can be used by new team developers to understand the system
modularization.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 19

6.5 PLC Attorneys

Architectural rules specification: The software architect specified 14 modules
and 11 architectural rules. A relevant subset of the specification is presented in
Figure 16. The purpose of the system is to keep the customer aware of the tasks that
have been resolved and the ones that are still pendent. Therefore, module project is
responsible for handling data about the customers’ project and can access modules
that contain data it needs (line 4). Module project_relations is responsible for
storing customer data, reporting progress, and displaying charts, and hence can
access modules that provide underlying services (line 12). Finally, module mailers

is responsible for triggering e-mails to clients and can access modules that provide
information about the projects (line 17).

1 project:
2 files: ’app/models/project.rb’
3 required: ’activerecord’
4 allowed: ’chartdraw, project_relations, admins’
5

6 project_relations:
7 files: ’app/models/area.rb, app/models/company.rb, app/models/areas_project.rb,
8 app/models/attack.rb, app/models/control.rb, app/models/diagnostic.rb,
9 app/models/improvement.rb, app/models/action.rb, app/models/task.rb,

10 app/models/responsible.rb’
11 required: ’activerecord’
12 allowed: ’chartdraw, mailers, admins’
13

14 mailers:
15 files: ’app/mailers/∗∗/∗.rb’
16 allowed: ’project_relations, project’
17 required: ’actionmailer’

Figure 16 – Subset of the architectural specification of PLC Attorneys

Architectural conformance: ArchRuby could detect two violations in PLC

Attorneys, as reported in Table 4. We argue that the small number of violations
is because the system is small and it is in the beginning of the development, which
contributes to developers to commit fewer architectural mistakes. However, we
found a critical violation that must be corrected before deploying the system to the
production environment. This violation is discussed next.

Table 4 – Architectural violations detected in PLC Attorneys

Module Rules # Violations

mailers required: ’actionmailer’ 1
controller allowed: ’presenters, ...’ 1

Example of violation #4: The e-mail delivery service relies on Gem ActionMailer

for the task of sending e-mails. Nevertheless, as shown is Figure 17,
class DiagnosticsMailer—which belongs to module mailers—does not es-
tablish dependency with the aforementioned Gem, which is required according to
the architectural rules (line 17 of Figure 16). This violation is inevitably critical
because the e-mails will not be delivered without the establishment of the dependency
with ActionMailer.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

20 · Miranda et al.

1 class DiagnosticsMailer #from Module mailers
2 default from: "test@test.com"
3

4 def diagnostic_created(admin, project_id, area_id)
5 @admin = admin
6 @project = Project.find(project_id)
7 @area = Area.find(area_id)
8

9 mail(to: @admin.email, subject: ’[PLC − Added new diagnostic!’)
10 end
11 end

Figure 17 – Example #4 – Absence detected in PLC Attorneys

Architectural visualization: Figure 18 illustrates a fragment of the reflexion model
to better visualize some identified violations. We note an absence (red edge) from
module mailers to module actionmailer, which refers to the scenario described in
Example #4. We also note a divergence (orange edge) from module controller to
documents.

actionmailer

admins chartdrawmailers

project

project_relations

activerecord

X (#1)

controllerdocuments
! (#1)

Figure 18 – Fragment of the reflexion model of PLC

6.5.1 Discussion

Since the system is in the early stages of its development, the number of architectural
rules is relatively small. This also leads to a small number of architectural violations
and thereafter to a small number of violations detected by ArchRuby. Nevertheless,
ArchRuby could detect a serious architectural violation. The developer have not
established a required dependency between modules mailers and actionmailer.
Without such dependency, the system was unable to send e-mails. The architect
reported this violation as a serious one because it breaks a core feature of the system.
The architect also suggests that ArchRuby should provide means to automatically
specify the architectural rules in order to minimize the effort by the software architect.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 21

6.6 General Discussion

It is important to highlight some points about the evaluation described in this section:
(i) the software architects occasionally had to refine the architectural rules in order to
avoid false positives after the architectural conformance process, which indicates that—
in practice—the architectural rules specification and architectural conformance steps
are jointly done; (ii) we could detect a high number of divergences in Dito Social and
Tim Beta, which shows that developers establish dependencies with modules that are
forbidden (or not explicitly allowed) by the architectural rules; (iii) on the other hand,
we could detected few violations in PLC Attorneys. Since the system is new and small,
we argue that these properties contribute to developers to commit fewer architectural
mistakes; (iv) the software architects had no previous knowledge on the identified
violations and reported that they negatively impact on the maintenance of the systems;
(v) since we rely primarily on reflexion models, the software architects reported issues
on visualizing the architectural violations as the number of modules grows, suggesting
a scalability problem. In such cases, we allowed the architect to switch the high-level
architectural model to DSM; and (vi) the software architects claimed the need for
tool support to automatically monitor the source code and perform the architecture
conformance checking process.

6.7 Threats to Validity

There are two main threats to validity of the study [WRH+12]. First, as usual in
empirical studies in software engineering, we cannot claim that our approach will
provide equivalent results in other systems (external validity). However, we rely on
three real-world systems that have being developed by different teams. Second, we
relied on three software architects (one per system) to define the rules, to validate the
detected violations, and to analyze the visualization model. As typical in human-based
classifications, our results might be affected by some degree of subjectivity (construct
validity). However, it is important to highlight that we interviewed the software
architects who designed the evaluated architectures, and are responsible for their
maintenance and evolution. Therefore, they are the right experts to evaluate our
proposed approach.

7 Effectiveness of the Type Propagation Heuristic

Our type propagation mechanism, as described in Section 4, aims to raise the effec-
tiveness of our approach by increasing the number of analyzed dependencies. In this
section—based on the data of our previous evaluation—we provide a quantitative and
qualitative discussion on the number and importance of the types inferred by our
heuristic (effectiveness).

We observed, in the previous evaluation, that some architectural violations are only
detected due to our heuristic. Therefore, we investigated in the three previous evaluated
real-world systems—Dito Social, Tim Beta, and PLC Attorneys—the number of
types and violations that are only inferred and detected, respectively, due to our
heuristic.

7.1 Research Questions

We conducted a study to address the following overarching research questions:

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

22 · Miranda et al.

RQ #1 – How many types are only inferred due to our heuristic?

RQ #2 – How many violations are only detected due to our heuristic?

7.2 Data Set

Our study mainly relies on the three previously evaluated real-world systems—namely
Dito Social, Tim Beta, and PLC Attorneys—, w.r.t. the number of types and viola-
tions that are only inferred and detected, respectively, due to our heuristic.

7.3 Results and Discussion

In this section, we provide answers for the proposed research questions.

7.3.1 RQ #1: How many types are only inferred due to our heuristic?

Our approach relies on static code analysis techniques to extract the dependencies
that should be verified according to the planned architecture. Our heuristic ensures
the propagation of the inferred types. Otherwise, only direct inferences of types (e.g.,
instantiation) would be considered.

Methodology: In order to quantify the number of types that are exclusively inferred
by our heuristic, we performed ArchRuby in the three systems, enabling and disabling
our type propagation heuristic. It is important to differentiate (i) the number of
language features, which refers to expressions, statements, and declarations; (ii) the
number of dependencies, which refers to every single dependency inspected by the
conformance process; and (iii) the number of inferred types, which refers to every single
triple [method, var_name, type] in set TYPES, as previously explained in Section 4.
Thereupon, the number of language features is far higher than the number of
dependencies, which, in turn, is far higher than the number of inferred types. For
instance, assume the piece of code in Figure 19. There are seven language features,
two dependencies to be inspected by the conformance process (a instantiation of and a
method call from class Test to type Z), and only one inferred type ([Test::bar, x, Z]).

1 class Test
2 def bar
3 x = Z.new
4 if x.send(’foo’)
5 y = 3
6 end
7 end
8 end

Figure 19 – Number of language features, dependencies, and inferred types

Results and Discussion: Table 5 reports our results. On the average, the percentage
of additional types is 4.59%. In fact, PLC Attorneys was the only system that presented
percentagem below 5% since it represents a relative small system in the early stages
of its development.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 23

Table 5 – Number of inferred types by our proposed type propagation heuristic

Project # of inferred types
without heuristic

of inferred types
with heuristic

% added

Dito Social 566 598 5.65%
Tim Beta 672 709 5.51%
PLC Attorneys 154 158 2.60%

Average 4.59%

In order to provide an answer in a broader context, we complementarily
replicated our experiment in a data set of 28 open-source Ruby, as described
in Appendix B. As reported in Table 6, the percentage of additional types
is 5.03% ± 3.95% (average ± standard deviation). Statistically, the number of
additional types should fall between 3.50% and 6.56% within a 95% confidence interval.

Table 6 – Complementary analysis on the number of inferred types by our heuristic

Project # of inferred types
without heuristic

of inferred types
with heuristic

% added

Active Admin 345 349 1.16%
CanCan 26 26 0.00%
Capistrano 39 39 0.00%
Capybara 155 166 7.10%
CarrierWave 81 85 4.94%
CocoaPods 438 465 6.16%
DevDocs 283 292 3.18%
Devise 114 121 6.14%
diaspora* 934 952 1.93%
Discourse 2,950 3,124 5.90%
FPM 157 172 9.55%
GitLab 1,750 1,794 2.51%
Grape 137 146 6.57%
Homebrew-Cask 426 443 3.99%
Homebrew 8,026 8,125 1.23%
Huginn 463 477 3.02%
Jekyll 259 273 5.41%
Octopress 95 111 16.84%
Paperclip 132 137 3.79%
Rails 2,464 2,559 3.86%
RailsAdmin 231 234 1.30%
Resque 62 68 9.68%
Ruby 4,116 4,391 6.68%
Sass 519 560 7.90%
Simple Form 113 115 1.77%
Spree 1,311 1,324 0.99%
Vagrant 586 620 5.80%
Whenever 15 17 13.33%

Average 5.03%
Std Dev 3.95%

After a qualitative analysis of our results, although it is not trivial, we observed
that our heuristic could infer more types if it also analyses and propagates the
return type of method invocations. For instance, assume the piece of code in
Figure 20. In this example, set TYPES would contain the tuples [Clazz::foo, y, A] and

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

24 · Miranda et al.

[Clazz::bar, z, B], but if it could infer [Clazz::foo, x, B] by analyzing the returned
type, it would also include [A::qux, k, B] (where k is the name of the formal pa-
rameter in A::qux) in the set, which promotes the type propagation through the system.

1 class Clazz
2 def foo
3 x = bar()
4 y = A.new
5 y.qux(x)
6 end
7

8 def bar
9 z = B.new

10 z.baz
11 z
12 end
13 end

Figure 20 – Potential improvement to the type propagation heuristic

Final Remarks: Our heuristic increased the number of inspected dependencies by 5%
on the average, but could increase up to 17%. We argue that the increase depends on
the underlying programming style. For example, our heuristic achieves better results
when developers largely rely on the dependency injection design pattern [Met12].

7.3.2 RQ #2: How many violations are only detected due to our heuristic?

The previous research question showed that our heuristic may increase the number
of inspected types in 5% on the average. Nonetheless, it is important to investigate
whether these additional types contribute to the detection of architectural violations
in real scenarios.

Methodology: In order to measure the effectivity of our heuristic, i.e., the number of
violations that are identified exclusively by our heuristic, we re-performed ArchRuby

in the three real-world systems previously evaluated in Section 6.1, enabling and
disabling the type propagation heuristic.

Results and Discussion: From the 48 architectural violations detected in the three
real-world systems, three violations are detected exclusively by our heuristic. Therefore,
a preliminary analysis may point out the ineffectiveness of our heuristic. However, we
claim that our heuristic was indeed very effective. For example, we found 24 violations
on Dito Social. On one hand, from the 566 inferred types without our heuristic, we
found 22 violations (3.89%); on the other hand, from the 32 inferred types by our
heuristic, we could find two more violations (6.25%). Likewise, we found 22 violations
on Tim Beta. On one hand, from the 672 inferred types without the heuristic, we
found 21 violations (3.13%); on the other hand, from the 37 inferred types by our
heuristic, we could find one more violation (2.70%).

Figure 21 illustrates one of the violations that could be detected exclusively
by our heuristic. There are forbidden accesses to class Core::Datapoints::Orkut
(lines 7, 9, and 16), which are forbidden since features related to the Orkut social
network have been removed from Tim Beta. Specifically for the latest violation
(line 16), our approach could only detect it due to our heuristic, since the type

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 25

was first inferred in method verify_orkut_users_friends (line 7), but it was
propagated to the formal parameter collector (line 15) through the method call to
check_friends_count (line 9).

1 def self.verify_orkut_users_friends users_ids
2 file = File.open(’orkut_log.csv’, ’w’)
3 orkut_data = Network::ORKUT
4 users_ids.each do |user_id|
5 user_network = UserNetwork.where(:network_id => orkut_data.id,
6 :secundary_user_id => user_id).first
7 orkut_collector = Core::Datapoints::Orkut.new(user_network.access_token,
8 user_network.access_secret, user_network.social_id)
9 how_many = check_friends_count(orkut_collector)

10 file.puts "#{user_network.id}, #{user_network.url}, #{how_many}"
11 end
12 file.close
13 end
14

15 def self.check_friends_count(collector)
16 datapoints = collector.collect
17 friends_count = datapoints[:friends]
18 if friends_count > 500
19 #many statements
20 else
21 #few statements
22 end
23 end

Figure 21 – Divergence detected in Tim Beta using the type propagation heuristic

Final Remarks: Some violations are identified exclusively by our heuristic.
Disregarding the PLC Attorneys system where there are no violations detected by the
proposed heuristic, the overall percentage of the violations identified exclusively by our
heuristic is 4.35% (3/69), while in the remainder of the system is 3.47% (43/1,238).

8 Related Work

We organize related work in three sections: Architecture Conformance Techniques and
Tools (Section 8.1); (b) Studies using Dynamic Languages (Section 8.2); and (c) Ruby
Tools (Section 8.3).

8.1 Architecture Conformance Techniques and Tools

Our solution is inspired by DCLsuite, an architectural conformance and repair approach
for Java systems [TV09, TVCB15, TV08]. Software architects define a set of constraints
using the DCL language, and the tool detects architectural violations and provides
suggestions on how to solve them. By contrast, ArchRuby targets a dynamic language
(which required a definition and implementation of a type propagation heuristic),
allows the specification of architectural constraints in YAML files, and provides two
high-level architectural models to better visualize the identified violations; however,
ArchRuby does not contemplate architectural repair.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

26 · Miranda et al.

Several domain-specific languages have been proposed for architecture conformance.
SCL (Structural Constraint Language) [HH06] is a Prolog-like DSL to specify and
check design intent in C++ or Java code. LogEn [EKKM08] is another Prolog-like
language for defining and continuous checking structural dependencies in Java systems.
The language has a explicit type predicate, where the first argument is a source
element and the second parameter is its type name. DesignWizard [BGF11] is an
internal DSL for detecting design and architectural anomalies in Java-based software
architectures. Developers express the desired architecture by writing tests that make
assertions about the structure of the Java code. Therefore, these DSLs are proposed
for static languages, typically Java and C++, and heavily depend on type information.
Soul [MKPW06] is a Prolog-like language that provides access to the static structure
of Smalltalk programs (a dynamic language, like Ruby). However, Soul does not aim to
detect architectural violations (divergences and absences), but to enforce source code
regularities (e.g., all visitor methods must start with visit and must be implemented
in a method protocol called action).

The high-level architectural model provided by ArchRuby is inspired by
SAVE [KMNL06], an approach based on reflection models [MNS95]. SAVE com-
pares (i) the planned architecture, as idealized by the software architect, to (ii) the
implemented architecture, as extracted from source code. As a result, the tool com-
putes the reflection model that highlights divergences and absences between these two
models. Reflexion models, however, become unreadable as the number of modules and
dependencies grows. Thereupon, the other high-level architectural model provided
by ArchRuby is inspired by Lattix LDM, an approach based on DSMs [SJSJ05], which
relies on matrices that scale better than graphs. The high-level architectural models
produced by ArchRuby is very similar to a reflexion model and a DSM, although
it is generated from textual architectural rules. More important, developers using
ArchRuby can decide for the more appropriate high-level model to be used.

ArchLint [MVA+13, MVT+16] proposes a novel approach to detect architectural
violations, by mining version repositories. However, the systems relies on heuristics
to detect patterns of dependencies between modules, which are centered on type
information. Inspired on the Z language, LePUS [Ede01] is a formal language for
specifying object-oriented design and architectural patterns. However, instead of
checking architecture intent, LePUS focuses on the specification of programming
protocols, such as forward (that holds when the formal arguments of a method are
used to call a method with the same signature) and produce (a special kind of create
in which the new object is used in a return statement). The language also includes a
visual version, called LePUS3 [GNE08].

8.2 Studies using Dynamic Languages

Richards et al. [RHBV11] evaluated the use of eval in JavaScript, based on a corpus
of more than 10,000 popular web sites. Unlike our findings for Ruby, they report that
eval is popular and do not necessarily harmful. It is usually considered a best practice
for specific tasks, such as loading scripts or data asynchronously. The authors also
investigated a broad range of JavaScript dynamic features [RLBV10]. They concluded
for example that libraries often change the prototype links dynamically, but such
changes are restricted to built-in types, such as Object and Array, and changes in
user-created types are more rare.

Hills et al. [HKV13] report a study over a significant corpus of open-source PHP
systems to understand how developers actually use dynamic features, including dynamic

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 27

file inclusion, handlers for unimplemented methods or fields, an eval expression for
executing arbitrary PHP code at runtime, and variadic functions. The authors conclude
that a large number of uses of dynamic features could be replaced by static ones
without changing the expected behavior. Another group of researchers reached the
same conclusion in a case study over a 1,000 systems developed using the Pharo
language [CRTR13]. Orru et al. [OTMT15] analyzed a collection of 51 software
systems written in Python, to shed light on how they use inheritance. They show that
fewer classes inherit from other classes (w.r.t. Java), but more classes are inherited
from. They also claim that the dataset used in this study can help to foster further
research on Python software [OTM+15].

Hanenberb et al. [Han10] show that dynamic languages can produce high-quality
systems, but requiring less time than when using a static language. They report a
laboratory study when groups of developers implemented a lexical analyzer in two
versions of a language, with static and dynamic types, respectively. The implementation
using a static language required 161 hours, while the implementation using the dynamic
version of the language required 108 hours.

8.3 Ruby Tools

In the Ruby ecosystem, we are not aware of any architectural conformance and
visualization technique as the one proposed in this paper. However, there are several
tools that aim to increase the quality of Ruby systems through static code analysis
techniques. Code Climate10 is a tool that assists in code reviews. It reports where
the system has to improve, e.g., complex methods, security breaches, refactoring
opportunities, etc. The tool also suggests reference literature for developers to better
understand the problem and the correction actions. Rubocop11 is a Gem that performs
static code analysis to verify error and style rules, likewise LASER12 and ruby-lint13.
In another line, Brakeman14 is a security vulnerability scanner and Pelusa15 indicates
possible red flags or missing best practices. ArchRuby, in turn, complements these
tools by providing means to control the architectural erosion process.

9 Conclusion

Software architecture erosion is a recurrent problem in software development. Devia-
tions from the planned architecture have strong impact on the system maintainability
and evolvability, and may even lead to the rewriting of components. Even more critical,
the erosion process might be even more severe in dynamic languages because (i) the
dynamic constructs provided by such languages make developers more propitious to
break the architecture, and (ii) the developers of dynamic languages lack tool support
for monitoring the implemented architecture.

To address these shortcomings, this paper described an architectural conformance
and visualization approach based on static code analysis techniques and a lightweight
type propagation heuristic. Such a solution provides means to control the architectural
erosion process by reporting architectural violations and visualizing them in two

10https : //codeclimate.com/
11https : //github.com/bbatsov/rubocop
12https : //github.com/michaeledgar/laser
13https : //github.com/YorickPeterse/ruby− lint
14http : //brakemanscanner.org/
15https : //github.com/codegram/pelusa

Journal of Object Technology, vol. V, no. N, 2015

https://codeclimate.com/
https://github.com/bbatsov/rubocop
https://github.com/michaeledgar/laser
https://github.com/YorickPeterse/ruby-lint
http://brakemanscanner.org/
https://github.com/codegram/pelusa
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

28 · Miranda et al.

high-level architectural models, namely reflexion models and DSMs. This paper also
presented a tool—called ArchRuby—that implements our approach.

We evaluated our solution in three real-world systems identifying 48 architectural
violations of which the developers had no prior knowledge. We also evaluated our
type propagation heuristic in 28 open-source systems, reporting that (i) the number
of analyzed types raises 5% on the average, but it may increase up to 17%; and
(ii) certain violations are only detected due to our heuristic. As a practical result,
ArchRuby was integrated into the software development process adopted by Dito, the
company responsible for the evaluated systems.

Ideas for future work include (i) incorporating an architectural repair solution
that provides suggestions on how to solve the detected violations; (ii) improving our
type propagation heuristic; (iii) integrating the proposed approach to mainstreams
IDEs (e.g., RubyMine) for a better usability; and (iv) extending our solution to other
dynamic languages.

The ArchRuby tool and its source code is public available at:
http : //aserg.labsoft.dcc.ufmg.br/archruby

References

[BC99] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of
Modularity. MIT Press, 1999.

[BGF11] Joao Brunet, Dalton Guerreiro, and Jorge Figueiredo. Structural con-
formance checking with design tests: An evaluation of usability and
scalability. In 27th International Conference on Software Maintenance
(ICSM), pages 143–152, 2011. doi:10.1109/ICSM.2011.6080781.

[Bla09] David A. Black. The Well-Grounded Rubyist. Manning, 2009.

[Bor11] Jens Borchers. Invited talk: Reengineering from a practitioner’s view –
a personal lesson’s learned assessment. In 15th European Conference on
Software Maintenance and Reengineering (CSMR), pages 1–2, 2011.
doi:10.1109/CSMR.2011.63.

[Bos04] Jan Bosch. Software architecture: The next step. In First Eu-
ropean Workshop (EWSA), pages 194–199, 2004. doi:10.1007/
978-3-540-24769-2_14.

[CRTR13] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger.
How (and why) developers use the dynamic features of programming
languages: the case of smalltalk. Empirical Software Engineering,
18(6):1156–1194, 2013. doi:10.1007/s10664-012-9203-2.

[Ede01] Amnon H. Eden. Formal specification of object-oriented design. In
International Conference on Multidisciplinary Design in Engineering,
pages 256–263, 2001. doi:N/A.

[EKKM08] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini.
Defining and continuous checking of structural program dependencies.
In 30th International Conference on Software Engineering (ICSE),
pages 391–400, 2008. doi:10.1145/1368088.1368142.

[FhDAFH09] Michael Furr, Jong hoon (David) An, Jeffrey S. Foster, and Michael
Hicks. Static type inference for Ruby. In 24th Symposium on Applied

Journal of Object Technology, vol. V, no. N, 2015

http://aserg.labsoft.dcc.ufmg.br/archruby
http://dx.doi.org/10.1109/ICSM.2011.6080781
http://dx.doi.org/10.1109/CSMR.2011.63
http://dx.doi.org/10.1007/978-3-540-24769-2_14
http://dx.doi.org/10.1007/978-3-540-24769-2_14
http://dx.doi.org/10.1007/s10664-012-9203-2
http://dx.doi.org/N/A
http://dx.doi.org/10.1145/1368088.1368142
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 29

Computing (SAC), pages 1859–1866, 2009. doi:10.1145/1529282.
1529700.

[GNE08] Epameinondas Gasparis, Jonathan Nicholson, and Amnon H. Eden.
LePUS3: An object-oriented design description language. In 5th
International Diagrammatic Representation and Inference Confer-
ence, volume 5223 of Lecture Notes in Computer Science, pages 19–21.
Springer, 2008. doi:10.1007/978-3-540-87730-1_37.

[Han10] Stefan Hanenberg. An experiment about static and dynamic type
systems: Doubts about the positive impact of static type systems on
development time. In Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA), pages 22–35, 2010.
doi:10.1145/1869459.1869462.

[HH06] Daqing Hou and H. James Hoover. Using SCL to specify and check de-
sign intent in source code. IEEE Transactions on Software Engineering,
32(6):404–423, 2006. doi:10.1109/TSE.2006.60.

[HKV13] Mark Hills, Paul Klint, and Jurgen J. Vinju. An empirical study of
PHP feature usage: a static analysis perspective. In International
Symposium on Software Testing and Analysis (ISSTA), pages 325–
335, 2013. doi:10.1145/2483760.2483786.

[KMHM08] Jens Knodel, Dirk Muthig, Uwe Haury, and Gerald Meier. Architecture
compliance checking - experiences from successful technology transfer
to industry. In 12th European Conference on Software Maintenance
and Reengineering (CSMR), pages 43–52, 2008. doi:10.1109/CSMR.
2008.4493299.

[KMNL06] Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lindvall. Static
evaluation of software architectures. In 10th European Conference
on Software Maintenance and Reengineering (CSMR), pages 279–294,
2006. doi:10.1109/CSMR.2006.53.

[KMR08] Jens Knodel, Dirk Muthig, and Dominik Rost. Constructive architec-
ture compliance checking - an experiment on support by live feedback.
In 24th International Conference on Software Maintenance (ICSM),
pages 287–296, 2008. doi:10.1109/ICSM.2008.4658077.

[Met12] Sandi Metz. Practical Object-Oriented Design in Ruby: An Agile
Primer. Addison-Wesley, 2012.

[MKPW06] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-
evolving code and design with intensional views: A case study.
Computer Languages, Systems & Structures, 32(2-3):140–156, 2006.
doi:10.1016/j.cl.2005.09.002.

[MNS95] Gail Murphy, David Notkin, and Kevin Sullivan. Software reflexion
models: Bridging the gap between source and high-level models. In
3rd Symposium on Foundations of Software Engineering (FSE), pages
18–28, 1995. doi:10.1145/222124.222136.

[MVA+13] Cristiano Maffort, Marco Tulio Valente, Nicolas Anquetil, Andre
Hora, and Mariza Bigonha. Heuristics for discovering architectural vio-
lations. In 20th Working Conference on Reverse Engineering (WCRE),
pages 222–231, 2013. doi:10.1109/WCRE.2013.6671297.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.1145/1529282.1529700
http://dx.doi.org/10.1145/1529282.1529700
http://dx.doi.org/10.1007/978-3-540-87730-1_37
http://dx.doi.org/10.1145/1869459.1869462
http://dx.doi.org/10.1109/TSE.2006.60
http://dx.doi.org/10.1145/2483760.2483786
http://dx.doi.org/10.1109/CSMR.2008.4493299
http://dx.doi.org/10.1109/CSMR.2008.4493299
http://dx.doi.org/10.1109/CSMR.2006.53
http://dx.doi.org/10.1109/ICSM.2008.4658077
http://dx.doi.org/10.1016/j.cl.2005.09.002
http://dx.doi.org/10.1145/222124.222136
http://dx.doi.org/10.1109/WCRE.2013.6671297
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

30 · Miranda et al.

[MVT15a] Sergio Miranda, Marco Tulio Valente, and Ricardo Terra. ArchRuby:
Conformidade e visualização arquitetural em linguagens dinâmicas. In
VI Brazilian Conference on Software: Theory and Practice (CBSoft),
Tools Session, pages 1–8, 2015. doi:N/A.

[MVT15b] Sergio Miranda, Marco Tulio Valente, and Ricardo Terra. Con-
formidade e visualização arquitetural em linguagens dinâmicas. In
XVIII Ibero-American Conference on Software Engineering (CIbSE),
Software Engineering Technologies (SET) Track, pages 1–14, 2015.
doi:N/A.

[MVT+16] Cristiano Maffort, Marco Tulio Valente, Ricardo Terra, Mariza
Bigonha, Nicolas Anquetil, and Andre Hora. Mining architectural
violations from version history. Empirical Software Engineering Jour-
nal, pages 1–42, 2016. doi:10.1007/s10664-014-9348-2.

[OTM+15] Matteo Orrú, Ewan Tempero, Michele Marchesi, Roberto Tonelli, and
Giuseppe Destefanis. A curated benchmark collection of python
systems for empirical studies on software engineering. In 11th
International Conference on Predictive Models and Data Analyt-
ics in Software Engineering (PROMISE), pages 1–4, 2015. doi:
10.1145/2810146.2810148.

[OTMT15] Matteo Orru, Ewan Tempero, Michele Marchesi, and Roberto Tonelli.
How do Python programs use inheritance? a replication study. In 22nd
Asia Pacific Software Engineering Conference (APSEC), pages 19–21,
2015. doi:N/A.

[Par94] David Lorge Parnas. Software aging. In 16th International Conference
on Software Engineering (ICSE), pages 279–287, 1994. doi:10.1109/
ICSE.1994.296790.

[PTD+10] Leonardo Passos, Ricardo Terra, Renato Diniz, Marco Tulio Valente,
and Nabor Mendonça. Static architecture-conformance checking:
An illustrative overview. IEEE Software, 27(5):82–89, 2010. doi:
10.1109/MS.2009.117.

[RHBV11] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek.
The eval that men do: A large-scale study of the use of eval in
JavaScript applications. In 25th European Conference on Object-
oriented Programming (ECOOP), pages 1–27, 2011. doi:10.1007/
978-3-642-22655-7_4.

[RLBV10] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of JavaScript programs. In 31st
Conference on Programming Language Design and Implementation
(PLDI), pages 1–12, 2010. doi:10.1145/1806596.1806598.

[SGCH01] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben
Hallen. The structure and value of modularity in software design. In
9th International Symposium on Foundations of Software Engineering
(FSE), pages 99–108, 2001. doi:10.1145/503209.503224.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using
dependency models to manage complex software architecture. In 20th
Conference on Object-Oriented Programming, Systems, Languages,

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/N/A
http://dx.doi.org/N/A
http://dx.doi.org/10.1007/s10664-014-9348-2
http://dx.doi.org/10.1145/2810146.2810148
http://dx.doi.org/10.1145/2810146.2810148
http://dx.doi.org/N/A
http://dx.doi.org/10.1109/ICSE.1994.296790
http://dx.doi.org/10.1109/ICSE.1994.296790
http://dx.doi.org/10.1109/MS.2009.117
http://dx.doi.org/10.1109/MS.2009.117
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/503209.503224
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 31

and Applications (OOPSLA), pages 167–176, 2005. doi:10.1145/
1094811.1094824.

[SRK+09] Santonu Sarkar, Shubha Ramachandran, G. Sathish Kumar,
Madhu K. Iyengar, K. Rangarajan, and Saravanan Sivagnanam. Mod-
ularization of a large-scale business application: A case study. IEEE
Software, 26:28–35, 2009. doi:10.1109/MS.2009.42.

[TV08] Ricardo Terra and Marco Tulio Valente. Towards a dependency con-
straint language to manage software architectures. In 2nd European
Conference on Software Architecture (ECSA), pages 256–263, 2008.
doi:10.1007/978-3-540-88030-1_19.

[TV09] Ricardo Terra and Marco Tulio Valente. A dependency constraint
language to manage object-oriented software architectures. Software:
Practice and Experience, 32(12):1073–1094, 2009. doi:10.1002/spe.
931.

[TVCB15] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and
Roberto S. Bigonha. A recommendation system for repairing vio-
lations detected by static architecture conformance checking. Software:
Practice and Experience, 45(3):315–342, 2015. doi:10.1002/spe.2228.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing. Springer, 2012. doi:10.1007/978-3-642-29044-2.

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.1145/1094811.1094824
http://dx.doi.org/10.1145/1094811.1094824
http://dx.doi.org/10.1109/MS.2009.42
http://dx.doi.org/10.1007/978-3-540-88030-1_19
http://dx.doi.org/10.1002/spe.931
http://dx.doi.org/10.1002/spe.931
http://dx.doi.org/10.1002/spe.2228
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

32 · Miranda et al.

A Dependency Structure Matrices

This appendix presents the DSMs of the systems evaluated in Section 6. Figures 22, 23,
and 24 illustrate the DSM of Dito Social, Tim Beta, and PLC Attorneys, respectively.

Figure 22 – DSM of Dito Social

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 33

Figure 23 – DSM of Tim Beta

Figure 24 – DSM of PLC Attorneys

Journal of Object Technology, vol. V, no. N, 2015

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

34 · Miranda et al.

B Open-source Data Set

Table 7 summarizes information about our open-source data set. It contains 28
out of the 30 most starred Ruby projects in Github (on September, 2015), which
represents a large and heterogeneous collection of software systems, ranging from
management systems and remote server automation to frameworks and medium-sized
general-purpose libraries.16 We discarded only two projects: Bootstrap for Sass, a
tiny project that solely provides support to the Sass-based bootstrap CSS framework;
and Software Engineering Blogs, which is not an application but a plain Ruby
script that generates an OPML17 file with a list of technology web sites. In total, we
analyzed over half million LOC and eight thousand rb files.

Table 7 – Evaluated open-source systems

Project and version LOC # of rb files # of Gems
Active Admin (v1.0.0.pre1) 6,053 154 42
CanCan (v1.6.10) 878 16 13
Capistrano (v3.4.0) 2,544 44 7
Capybara (v2.5.0) 8,894 107 20
CarrierWave (v0.10.0) 2,075 37 15
CocoaPods (v0.39.0.beta.4) 8,128 94 41
DevDocs (66cefbd) 12,339 293 27
Devise (v3.4.1) 3,007 60 19
diaspora* (v0.5.2.0) 6,775 126 128
Discourse (vlatestes-realease) 14,183 219 101
FPM (v1.4.0) 3,537 25 11
GitLab (v7.14.1) 11,591 219 137
Grape (v0.13.0) 3,370 88 24
Homebrew-Cask (v0.56.0) 5,720 136 8
Homebrew (8278b89) 133,322 3,429 4
Huginn (f4b8e73) 1,464 18 90
Jekyll (v3.0.0.pre.beta8) 3,911 61 39
Octopress (v2.0) 1,313 23 13
Paperclip (v4.3.0) 3,081 59 34
Rails (v4.2.4) 55,530 849 82
RailsAdmin (v0.7.0) 4,624 111 48
Resque (v1.25.0.pre) 1,885 25 12
Ruby (v2_2_3) 170,345 1,076 0
Sass (v3.4.18) 13,080 130 8
Simple Form (v3.1.0.rc2) 2,007 55 9
Spree (v3.0.4) 5,947 149 6
Vagrant (v1.7.4) 8,156 126 21
Whenever (v0.9.4) 632 13 3

16https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories,
as available on August 2015.

17Outline Processor Markup Language (OPLM) is an XML format for outlines, which is straight-
forward imported by RSS readers.

Journal of Object Technology, vol. V, no. N, 2015

https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Architecture Conformance Checking in Dynamically Typed Languages · 35

About the authors

Sergio Miranda is a M.Sc. student in Computer Science at
Federal University of Minas Gerais, Brazil. He has been team
leader in Dito IT company for six years, working with scala-
bility and architecture of large-scale systems. Contact him at
sergio.miranda@dcc.ufmg.br.

Elder Rodrigues Jr is an undergraduate student of Computer
Science at Federal University of Lavras, Brazil. He also received
the technical high school degree in Informatics from CEFET-MG,
Brazil (2012). He has worked as teaching assistant of Algorithms
and Data Structures for one year. Currently, he holds a CNPq ju-
nior research grant to work on architectural conformance. Contact
him at elderjr@computacao.ufla.br.

Marco Tulio Valente received his PhD degree in Computer Sci-
ence from the Federal University of Minas Gerais, Brazil (2002),
where he is an assistant professor in the Computer Science De-
partment, since 2010. His research interests include software archi-
tecture and modularity, software maintenance and evolution, and
software quality analysis. He is a “Researcher I-D” of the Brazilian
National Research Council (CNPq). He also holds a “Researcher
from Minas Gerais State” scholarship, from FAPEMIG. Valente
has co-authored more than 80 refereed papers in international con-
ferences and journals. Currently, he heads the Applied Software
Engineering Research Group (ASERG), at DCC/UFMG. Contact
him at mtov@dcc.ufmg.br, or visit www.dcc.ufmg.br/~mtov.

Ricardo Terra received his Ph.D. degree in Computer Science
from Federal University of Minas Gerais, Brazil (2013) with a 1-year
internship at the University of Waterloo, Canada. Since 2014, he
is an assistant professor in the Department of Computer Science at
Federal University of Lavras, Brazil. His research interests include
software architecture maintainability and evolvability. Contact
him at terra@dcc.ufla.br, or visit www.dcc.ufla.br/~terra.

Acknowledgments Our research has been supported by CAPES, FAPEMIG, and
CNPq.

Journal of Object Technology, vol. V, no. N, 2015

mailto:sergio.miranda@dcc.ufmg.br
mailto:elderjr@computacao.ufla.br
mailto:mtov@dcc.ufmg.br
www.dcc.ufmg.br/~mtov
mailto:terra@dcc.ufla.br
www.dcc.ufla.br/~terra
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

	Introduction
	Background
	Ruby
	Architectural Conformance and Visualization

	The Proposed Approach
	Running Example
	Architectural Rules Specification
	Architectural Conformance
	Architectural Visualization
	Reflexion Model
	Dependency Structure Matrix

	The Proposed Type Propagation Heuristic
	The ArchRuby Tool
	Evaluation of the Proposed Approach
	Target Systems
	Methodology
	Dito Social
	Discussion

	Tim Beta
	Discussion

	PLC Attorneys
	Discussion

	General Discussion
	Threats to Validity

	Effectiveness of the Type Propagation Heuristic
	Research Questions
	Data Set
	Results and Discussion
	RQ #1: How many types are only inferred due to our heuristic?
	RQ #2: How many violations are only detected due to our heuristic?

	Related Work
	Architecture Conformance Techniques and Tools
	Studies using Dynamic Languages
	Ruby Tools

	Conclusion
	Bibliography
	Dependency Structure Matrices
	Open-source Data Set
	About the authors

